
Deformed Minkowski spaces: classification and properties

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 1215

(http://iopscience.iop.org/0305-4470/29/6/009)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 1215–1226. Printed in the UK

Deformed Minkowski spaces: classification and properties
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Abstract. Using general but simple covariance arguments, we classify the ‘quantum’
Minkowski spaces for dimensionless deformation parameters. This requires a previous analysis
of the associated Lorentz groups, which reproduces a previous classification by Woronowicz
and Zakrzewski. As a consequence of the unified analysis presented, we give the commutation
properties, the deformed (and central) length element and the metric tensor for the different
spacetime algebras.

1. Introduction

Following the approach of [1], we present here a classification of the possible deformed
Minkowski spaces (algebras). Our analysis, which provides a common framework for
the properties of the various Minkowski spacetimes, requires the consideration of the two
(SLq(2) and SLh(2)) deformations ofSL(2, C) and provides a characterization of the
appropriateR-matrices defining the deformed Lorentz groups given in [2] (see also [3]).

It is well known thatGL(2, C) admits only two different deformations that possess
a central determinant: one is the standardq-deformation [4, 5] and the other is the non-
standard or ‘Jordanian’h-deformation [6–8]. BothGLq(2) and GLh(2) have associated
‘quantum spaces’ in the sense of [9]. These deformations (which may be shown to be
related by contraction [10]) are defined as the associative algebras generated by the entries
a, b, c, d of a matrixM, the commutation properties of which may be expressed by an ‘FRT’
equation [5]

R12M1M2 = M2M1R12 (1)

for a suitableR-matrix. Let us summarize their properties.

(a) For GLq(2) the R-matrix in (1) is (λ ≡ q − q−1)

Rq =


q 0 0 0

0 1 0 0

0 λ 1 0

0 0 0 q

 R̂q ≡ PRq =


q 0 0 0

0 λ 1 0

0 1 0 0

0 0 0 q

 PRqP = Rt
q (2)
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1216 J A de Azc´arraga and F Rodenas

whereP is the permutation operator (P = P†, Pij,kl = δilδjk), and the commutation relations
defining the quantum group algebra are

ab = qba ac = qca ad − da = λbc

bc = cb bd = qdb cd = qdc.
(3)

Fun(GLq(2)) has a quadratic central element,

detq M := ad − qbc (4)

where detq M = 1 definesSLq(2). The matrixR̂q ≡ PRq satisfies Hecke’s condition

R̂2
q − λR̂q − I = 0 (R̂q − qI)(R̂q + q−1I ) = 0 (5)

and (we shall assumeq2 6= −1 [5] throughout) it has a spectral decomposition in terms of
a rank-three projectorPq+ and a rank-one projectorPq−,

R̂q = qPq+ − q−1Pq− R̂−1
q = q−1Pq+ − qPq−

[R̂q, Pq±] = 0 Pq±R̂qPq∓ = 0
(6)

Pq+ = I + qR̂q

1+ q2
Pq− = I − q−1R̂q

1+ q−2
= 1

1+ q−2


0 0 0 0

0 q−2 −q−1 0

0 −q−1 1 0

0 0 0 0

 . (7)

The following relations have an obvious equivalent in the undeformed case:

εqM
tε−1

q = M−1 εq =
( 0 q−1/2

−q1/2 0

)
= −ε−1

q Pq− ij,kl = −1

[2]q
εq ij ε

−1
q kl .

(8)

The determinant of an ordinary 2×2 matrix may be defined as the proportionality coefficient
in (detM)P− := P−M1M2 whereP− is given by (7) forq=1. In theq 6= 1 case theq-
determinant (4) may be expressed as

(detq M)Pq− := Pq−M1M2 (detq M−1)Pq− = M−1
2 M−1

1 Pq− (9)

(detq M−1 = (detq M)−1 and(detq M)†P †
q− = M

†
2M

†
1P

†
q−).

(b) For GLh(2) the R-matrix in (1) is the solution of the Yang–Baxter equation given
by

Rh =


1 −h h h2

0 1 0 −h

0 0 1 h

0 0 0 1

 R̂h ≡ PRh =


1 −h h h2

0 0 1 h

0 1 0 −h

0 0 0 1

 PRhP = R−1
h

(10)

(or Rh 12Rh 21 = I , the triangularity condition) for which (1) gives

[a, b] = h(ξ − a2) [a, c] = hc2 [a, d] = hc(d − a)

[b, c] = h(ac + cd) [b, d] = h(d2− ξ) [c, d] = −hc2
(11)
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(so that [a − d, c] = 0 follows), whereξ is the quadratic central element

ξ ≡ deth M = ad − cb − hcd . (12)

Settingξ = 1 reducesGLh(2) to SLh(2). The matrixR̂h satisfies

R̂2
h = I (I − R̂h)(I + R̂h) = 0 . (13)

It has two eigenvalues (1 and−1) and a spectral decomposition in terms of a rank-three
projectorPh+ and a rank-one projectorPh−

R̂h = Ph+ − Ph− Ph±R̂h = ±Ph± (14)

Ph+ = 1

2
(I + R̂h) Ph− = 1

2
(I − R̂h) = 1

2


0 h −h −h2

0 1 −1 −h

0 −1 1 h

0 0 0 0

 . (15)

For SLh(2), the formulae equivalent to those in (8) are

εhM
tε−1

h = M−1 εh =
(

h 1

−1 0

)

ε−1
h =

( 0 −1

1 h

)
Ph− ij,kl = −1

2
εh ij ε

−1
h kl .

(16)

Using Ph−, the deformed determinant and its inverse, deth M and deth M−1, (12) are also
given by equations (9).

The quantum planes [9] associated withSLq(2) andSLh(2) are the associative algebras
generated by two elements(x, y) ≡ X, the commutation properties of which (explicitly and
in R-matrix form) are:

(a) for SLq(2) [9]

xy = qyx ←→ RqX1X2 = qX2X1 (17)

(b) for SLh(2) [7, 8]

xy = yx + hy2 ←→ RhX1X2 = X2X1 . (18)

These commutation relations are preserved under transformations by the corresponding
quantum groups matrices† M, X′ = MX. This invariance statement, suitably extended to
apply to the case of deformed Minkowski spaces, provides the essential ingredient for their
classification.

From now on we shall often writeRQ, PQ (Q = q, h) to treat both deformations
simultaneously. For instance, equations (17) and (18) may be jointly written asRQX1X2 =
ρX2X1, whereρ = (q, 1) is the appropriate eigenvalue ofRQ.

† TheGLq(2) andGLh(2) matrices also preserve the ‘q-symplectic’ and ‘h-symplectic’ metricsεq (or εq
−1) and

εh
−1, respectively.



1218 J A de Azc´arraga and F Rodenas

2. Deformed Lorentz groups and associated Minkowski algebras

As is well known, the vector representationD
1
2 , 1

2 = D
1
2 ,0 ⊗D0, 1

2 of the restricted Lorentz
group may be given by the transformationK ′ = AKA†, A ∈ SL(2, C). The spacetime
coordinates are contained inK = K† = σµxµ, whereσ 0 = I andσ i are the Pauli matrices;
the time coordinate may be identified asx0 = 1

2 tr(K). Since detK = (x0)
2−xixi = detK ′,

the correspondence±A 7→ 3 ∈ SO(1, 3), where x ′µ = 3µ
νx

ν , realizes the covering
homomorphismSL(2, C)/Z2 = SO(1, 3). A first step to obtain a deformation of the
Lorentz group is to replace theSL(2, C) matricesA above by the generator matrixM of
SLq(2) [11–14].

In general, the full determination of a deformed Lorentz group requires the
characterization of all possible commutation relations among the generators (a, b, c, d) of
M and (a∗, b∗, c∗, d∗) of M†, M being a deformation ofSL(2, C). The R-matrix form of
these may be expressed in full generality by

R(1)M1M2 = M2M1R
(1) M

†
1R

(2)M2 = M2R
(2)M

†
1

M
†
2R

(3)M1 = M1R
(3)M

†
2 R(4)M

†
1M

†
2 = M

†
2M

†
1R

(4)
(19)

where R(3) † = R(2) = PR(3)P (or the ‘reality’ condition† for R(3)) and R(4) = R(1) †

or R(4) = (PR(1)−1P)† since the first equation in (19) is invariant under the exchange
R(1) ↔ PR(1)−1P.

Equations (19), which also follow (see, e.g., [15]) from the bi-spinor (dotted and
undotted) description of ‘quantum’ spacetime in terms of a deformedK, will be taken
as the starting point for the classification of the deformed Lorentz groups. In it, the matrix
R(1) characterizes the appropriate deformation of theSL(2, C) group (R(1) = RQ), R(2)

(or R(3)) defines how the elements ofM and M† commute and it is nota priori fixed
(but it must satisfy consistency relations withR(1), see equation (20) below) andR(4)

gives the commutation relations for the complex conjugated generators contained inM†.
The specification of the deformed Lorentz group will be completed by the commutation
properties of the generators with their complex conjugated ones, i.e. by the determination
of R(2) = R(3) †.

The commutation relations of the deformed Lorentz group algebra generators (entries
of M andM†) are given by equations (19). The consistency of these relations is assured if
R(1) (andR(4)) obey the Yang–Baxter equation (YBE) andR(3) andR(2) satisfy the mixed
consistency equations [1, 16]

R
(1)

12 R
(3)

13 R
(3)

23 = R
(3)

23 R
(3)

13 R
(1)

12 R
(4)

12 R
(2)

13 R
(2)

23 = R
(2)

23 R
(2)

13 R
(4)

12 (20)

(these two equations are actually the same since eitherR(4) = R(1) † or R(4) = (PR(1)−1P)†

andR(2) = R(3) †). It will be convenient to notice that the first equation, considered as an
‘RTT’ equation, indicates thatR(3) is a representation of the deformedGL(2, C) group, i.e.
the matrixR(3) provides a 2×2 representation of the entriesMij of the generator matrix
M: (Mij )αβ = R

(3)
iα,jβ . Thus,R(3) may be seen as a matrix in which the 2×2 blocks satisfy

between themselves the same commutation relations that the entries ofM do

R(3) =
[

A B

C D

]
∼ M =

[
a b

c d

]

† This reality condition can be given in a more general formR(3) † = τPR(3)P for |τ | = 1; however, this phase
factor can be eliminated by the redefinitionR(3) → τ1/2R(3) (cf [2]).
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and the problem of finding all possible Lorentz deformations is equivalent to finding all
possibleR(3) matrices with 2×2 block entries satisfying (3) or (11) such thatPR(3)P = R(3)†

(R̂(3) = R̂(3)†).
To introduce the deformed MinkowskialgebraM(j) associated with a deformed Lorentz

groupL(j) (where the indexj refers to the different cases) it is natural to extendK ′ = AKA†

above to the deformed case by stating that in it the correspondingK generates a comodule
algebra for the coactionφ defined by

φ : K 7−→ K ′ = MKM† K ′is = MijM
†
lsKjl K = K† 3 = M ⊗M∗ (21)

where it is assumed that the matrix elements ofK, which now do not commute among
themselves, commute with those ofM andM†. As in (17), (18) forq-two-vectors (rather,
two-spinors) we now demand that the commuting properties of the entries ofK are preserved
by (21). Extensive use has been made of covariance arguments to characterize the algebra
generated by the entries ofK, and the resulting equations are associated with the name of
reflection equations [17, 18] or, in a more general setting, braided algebras [19, 20] of which
the former constitute the ‘algebraic sector’ (for an introduction to braided geometry see [21]);
similar equations were also early introduced in [16]. Let us now extend the arguments given
in [1] to classify the deformed Lorentz groups and their associated Minkowski algebras in
an unified way.

This is achieved by describing the commutation properties of the entries of the Hermitian
matrix K generating a possible Minkowski algebraM by means of a general reflection
equation of the form

R(1)K1R
(2)K2 = K2R

(3)K1R
(4) (22)

where theR(i) matrices (i = 1, . . . , 4) are those introduced in (19). Indeed, writing equation
(22) for K ′ = MKM†, it follows that the invariance of the commutation properties ofK

under the associated deformed Lorentz transformation (21) is achieved if relations (19) are
satisfied.

The deformed Minkowski length and metric, invariant under a Lorentz transformation
(21) of L(j), is defined through the quantum determinant ofK. Since the two matrices
R̂(1) = PRQ have spectral decompositions (equations (6), (14)) with a rank-three projector
PQ+ and a rank-one projectorPQ−, and the determinants ofM, M† are central (equations
(9), (12)), theQ-deformedand invariant (under (21)) determinant of the 2×2 matrix K

may now be given by

(detQ K)PQ−P
†
Q− = −ρPQ−K1R̂

(3)K1P
†
Q− . (23)

It is easy to check that(PQ−P
†
Q−)

2 = (
ωQ/|[2]ρ |

)2
PQ−P

†
Q−, where ωq = |q| + |q−1|,

ωh = 2+ h2 and [2]1 = 2. In (23), the subindexQ in detQ K indicates that it depends on
q or h (or on other parameters on whichR(3) may depend) andρ (= (q, 1) as before) has
been added by convenience. SinceR̂(3) andK are Hermitian, detQ K is real (if ρ is not real
it may be factored out). We stress that the above formula provides a general expression for
a central (see below) quadratic element which constitutes thedeformed Minkowski length
for all deformed spacetimesM(j).

Similarly, it is possible to write in general the invariant scalar product ofcontravariant
(transforming as the matrixK, equation (21)) andcovariant (transforming byY 7→ Y ′ =
(M†)−1YM†) matrices (four-vectors) as the quantum trace of a matrix product [1] (cf [5]).
In the present general case, the deformed trace of a matrixB is defined by

trQ(B) := tr(DQB) DQ = ρ2 tr(2)(P(((RQ)t1)−1)t1) (24)
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where tr(2) means trace in the second space. This deformed trace is invariant under the
quantum group coactionB 7→ MBM−1 since the expression ofDQ above guarantees that
Dt

Q = MtDt
Q(M−1)t is fulfilled. In particular, theDQ matrices forRq andRh are found to

be

Dq =
(

q−1 0

0 q

)
Dh =

( 1 −2h

0 1

)
. (25)

Let us now find the expression of the metric tensor. UsingεQ (cf equations (8), (16))
(PQ−)ij,kl = −(1/[2]ρ)εQ ij ε

−1
Q kl and DQ = −εQ(ε−1

Q )t (Dt
Q = MtDt

Q(M−1)t now follow

from εQMtε−1
Q = M−1, equations (8) and (16)). The covariantKε

ij vector is

Kε
ij = R̂ε

Q ij,klKkl R̂ε
Q ≡ (1⊗ (ε−1

Q )t )R̂(3)(1⊗ (ε−1
Q )†) (26)

from which follows that the general Minkowski length and metric is given by

lQ ≡ detQ K = ρ

ωQ

trQ KKε ≡ ρ2gQ ij,klKijKkl gQ ij,kl = ρ−1

ωQ

DQ siR̂
ε
Q js,kl . (27)

This concludes the unified description of all cases. Let us now look at their classification
and specific properties.

3. Characterization of the Lorentz deformations

First we use the reality conditionR(3) † = PR(3)P to reduce the number of independent
parameters inR(3). It implies

R(3) ≡
[

A B

C D

]
≡


a11 a12 b11 b12

a21 a22 b21 b22

c11 c12 d11 d12

c21 c22 d21 d22

 =


a11 a12 a∗21 b12

a21 a22 b21 b22

a∗12 c12 a∗22 c∗22

b∗12 c22 b∗22 d22

 (28)

wherea11, d22, b21, c12 are real numbers and the rest are complex.

(a) Deformed Lorentz groups associated with SLq(2)

Let now M ∈ SLq(2) andR(1) = Rq , equation (2). The problem of finding theq-Lorentz
groups associated with the standard deformation is now reduced to obtaining all matrices
R(3) satisfying (20). This means that the 2×2 matricesA, B, C, D in (28) must satisfy the
commutation relations in (3). This implies that (see [2])B2 = C2 = 0, AD ∼ I2 and that
eitherB or C are zero. Now

(a1) B = 0 gives:

R(3) =


a11 0 0 0

0 a22 0 0

0 c12 a∗22 0

0 0 0 d22

 with a11, d22, c12 ∈ R .

From AD ∼ I2 it is easy to see (fixing firsta11 = 1) that d22 = a∗22/a22; its reality then
implies d22 = ±1, d22 = 1 when a22 ∈ R and d22 = −1 for a22 ∈ iR. The relation
AC = qCA forcesa22 = q−1 or c12 = 0.
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(a2) C = 0 gives:

R(3) =


a11 0 0 0

0 a22 b21 0

0 0 a∗22 0

0 0 0 d22

 with a11, d22, b21 ∈ R, a11 = 1 .

as in the previous case,d22 = ±1 anda22 ∈ R for d22 = 1 anda22 ∈ iR for d22 = −1.
Analogously, fromAB = qBA one obtains thatb21 = 0 or a22 = q.

Thus, the solutions forR(3) are as follows:

R(3) =


q 0 0 0

0 1 0 0

0 r 1 0

0 0 0 q

 q ∈ R r ∈ R (29)

R(3) =


1 0 0 0

0 t 0 0

0 0 ±t 0

0 0 0 ±1

 + for t ∈ R − for t ∈ iR (30)

R(3) =


q−1 0 0 0

0 1 r 0

0 0 1 0

0 0 0 q−1

 q ∈ R r ∈ R (31)

R(3) =


1 0 0 0

0 q−1 0 0

0 r −q−1 0

0 0 0 −1

 q ∈ iR r ∈ R (32)

R(3) =


1 0 0 0

0 q r 0

0 0 −q 0

0 0 0 −1

 q ∈ iR r ∈ R (33)

Remarks. Notice that, as anticipated, theQ-‘determinant’ of all theseR(3) matrices,
computed as detQ M, is a scalar (and hence a commuting) 2×2 matrix.

R
†
q = PRqP iff q ∈ R. Hence,R(4)

12 = Rq21 or R−1
q12. ThusM̃ ≡ (M−1)† provides a

second copy ofSLq(2), since thenRqM̃1M̃2 = M̃2M̃1Rq .
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The case (29) forr = q−q−1 = λ (R(3) = Rq) is the quantum Lorentz group of [12, 13]
(L(1)

q in the notation of [1]). Ifr 6= λ we obtain a ‘gauged’ version of it:R(3) = eασ 3
2 Rqe−ασ 3

2

(r = λe2α), where the subindex inσ 3
2 refers to the second space.

The matrix (30) fort = 1 andq ∈ R corresponds toL(2)
q in [1].

The calculations leading to (30)–(33) require assumingq2 6= 1. However, the solutions
for q ∈ R are also valid in the limitq = 1 (see [2]); in this limit (R(1) = R(4) = I4), the case
(30) gives the deformed Lorentz group (twisted) of [22]. Forq = −1, additional solutions
appear and, although we shall not discuss these particular cases (see [2]), the associated
Minkowski algebras may be obtained as in the generalq case.

These results coincide with the classification in [2]: the solutions (30) correspond to
equations (13) and (14) in [2]; similarly, (29), (31), (32) and (33) correspond to (74) (q

real), (15), (74) (q imaginary) and (16) in [2].

(b) Deformed Lorentz groups associated with SLh(2)

Now let R(1) = Rh, equation (10). Forh imaginary,h ∈ iR, the matrixRh satisfies the
reality conditionR∗h = R−1

h (= PRhP); this means thatM̃ ≡ M∗ defines a second copy of
SLh(2) sinceRhM

∗
1M∗2 = M∗2M∗1Rh. The value ofh ∈ C\{0}, however, is not important.

Indeed, quantum groups related with two different values ofh ∈ C are equivalent and their
R matrices are related by a similarity transformation†; thus, we can takeh ∈ R or even
h = 1.

Since the entries ofM satisfy (11), the 2×2 blocks inR(3) (equation (28)) will now
satisfy these commutation relations. This leads to (see [2])C = 0 so that, taking the
h-‘determinant’ ofR(3) equalI2, the set of commutation relations reduces to

AD = I2 [A, B] = h(I2− A2) . (34)

By using them in (28), the following solutions forR(3) are found (h ∈ R):

R(3) =


1 0 0 0

0 1 r 0

0 0 1 0

0 0 0 1

 r ∈ R (35)

R(3) =


1 0 −h 0

−h 1 r h

0 0 1 0

0 0 h 1

 h ∈ R r ∈ R . (36)

Remarks. In (36), for r = h2 we haveR(3) = (PRhP)t2. However, the parameterr can
be removed with an appropriate change of basis providedh 6= 0. For h = 0, this is not
possible and constitutes a different case, equation (35). This case is another example where
the non-commutativity is solely due toR(3) 6= I4.

The cases (35), (36) correspond to (20) and (21) (cf equation (78) in [2]) in [2].

† Quantum groups associated withRh and Rh=1 are related by a similarity transformation defined by the 2×2
matrix S = diag(h−1/2, h1/2): Rh=1 = (S ⊗ S)Rh(S ⊗ S)−1.



Deformed Minkowski spaces: classification and properties 1223

4. Minkowski algebras: classification and properties

We now present here, in explicit form, the commutation relations for the generators of
the deformed Minkowski spacetimes; they follow easily from (22) using the previous
R(3) matrices. We saw in (19) thatR(3) † = R(2) = PR(3)P and R(4) = R(1) † or
R(4) = (PR(1)−1P)† (these two possibilities are the same forQ = h). Clearly, equation
(22) allows for a factor in one side without impairing its invariance properties. This factor
may be selected with the (natural) condition that the resulting Minkowski algebra does not
contain generatorsα, β, . . ., with the Grassmann-like propertyα2 = β2 = · · · = 0. In terms
of PQ+, this is tantamount to requiring thatPQ+K1R̂

(3)K1P
†
Q+ must be non-zero. This

leads to (cf equation (22)) the equations

RQK1R
(2)K2 = ±K2R

(3)K1R
†
Q + for q, h ∈ R − for q ∈ iR . (37)

In the q-case we might also considerR(4) = (PR(1)−1P)†. However, using Hecke’s
condition forR(1) it is seen that this leads to the same algebra as (37) with the restriction
detq K = 0, so that this case may be considered as included in the previous one.

An important ingredient is the centrality of theQ-determinant (23),(detQ K)K =
K(detQ K), since it will correspond to the Minkowski length. Using twice (37) we find the
following commutation property for threeK matrices

RQ 13RQ 23K1R
(2)

12 K2R
(2)

13 R
(2)

23 K3 = K3R
(3)

13 R
(3)

23 K1R
(2)

12 K2R
†
Q 13R

†
Q 23 . (38)

Multiplying from the right byP12P
†
Q− 12 and byPQ− 12 from the left and using thatRQ and

R(3) representGLQ(2) and hence have a centralQ-‘determinant’ represented by a scalar
2×2 matrix we get

(detQ RQ)(detQ R(3))† (detQ K)K = (detQ RQ)†(detQ R(3)) K(detQ K) . (39)

The scalar detQ R(i) matrices always cancel out in the cases below (detq Rq = qI2 and
deth Rh = I2) assuring the centrality of detQ K (as may be checked by direct computation).

(a) q-Minkowski spaces associated with SLq(2)

(1) Let us consider the case (29) forr = λ (i.e. R(3) = Rq , q real). The commutation
relations for the entries ofK = (

α

γ

β

δ

)
are

αβ = q−2βα [δ, β] = q−1λαβ αγ = q2γα

[β, γ ] = q−1λ(δ − α)α [α, δ] = 0 [γ, δ] = q−1λγα
(40)

they characterize the algebraM(1)
q ([12–14]; see also [20, 23, 24, 1]). The Minkowski length

is given by (23)

detq K = αδ − q2γβ . (41)

If r 6= λ, the commutation relations are slightly different; this, however, corresponds only
to an appropriate election of the basis (‘gauged’ version of this Minkowski space).

(2) Let R(3) be given by (30). The centrality of theq-determinant implies thatq and t

are both real or both imaginary. The commutation relation for the entries ofK and the
q-Minkowski length (equation (23)) are (the+ sign is forq, t ∈ R and the− for q, t ∈ iR)

qαβ = ±tβα tαγ = ±qγα αδ = δα

[β, γ ] = ±tλαδ βδ = ±qtδβ δγ = ±qtγ δ
(42)
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detq,t K = q + q−1

q ± q−1
(−qγβ ± tαδ) . (43)

Remarks. For t = 1, these commutation relations correspond to the Minkowski algebra
M(2)

q [12, 25, 1] which is isomorphic to the quantum algebra† GLq(2).
For q = 1 andt real, we get the Minkowski space obtained in [22] (denotedM(3) in

[1]). This algebra and the corresponding deformed Poincaré algebra have been shown to
be [27] a simple transformation (twisting) of the classical one. As a result, it is possible to
remove the non-commuting character of the entries ofK [28].

(3) Let us takeR(3) as in (31) forr=−λ (R(3) = PR−1
q P). Then,

[α, β] = qλβδ [α, γ ] = −qλδγ [α, δ] = 0

[β, γ ] = qλ(α − δ)δ βδ = q2δβ γ δ = q−2δγ

(44)

detq K = q2αδ − βγ . (45)

This algebra may also be identified with the algebra of spacetime derivatives in [14] (see
also [23]).

(4) Let R(3) be now given by (32). The Minkowski algebra and the central length are given
by

αβ = −q−2βα δβ + βδ = rαβ αγ = −q2γα

[β, γ ] = −q−1λδα + rα2 [α, δ] = 0 γ δ + δγ = rγ α

(46)

detq K = −q[2]

λ
(q−2αδ + γβ) . (47)

(5) Finally, let R(3) be as in (33). Then

αβ + βα = −rβδ αγ + γα = −rδγ [α, δ] = 0

[β, γ ] = −qλαδ + rδ2 βδ = −q2δβ γ δ = −q−2δγ

(48)

detq K = −q[2]

λ
(q2αδ + βγ ) . (49)

(b) Deformed Minkowski spaces associated with SLh(2)

(1) Let R(3) be given first by (35) and letR(1) = Rh, equation (10). Using (37) with the
plus sign and (23), we find (h real)

[α, β] = −hβ2− rβδ + hδα − hβγ + h2δγ [α, δ] = h(δγ − βδ)

[α, γ ] = hγ 2+ rδγ − hαδ + hβγ − h2βδ [β, δ] = hδ2

[β, γ ] = hδ(γ + β)+ rδ2 [γ, δ] = −hδ2

(50)

deth K = 2

h2+ 2
(αδ − βγ + hβδ) . (51)

† The Minkowski space of [26] is also aGLq(2)-like space, but is different from the above.
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(2) Let R(3) be given now by (36) withr = 0. In this case

[α, β] = 2hαδ + h2βδ [α, δ] = 2h(δγ − βδ)

[α, γ ] = −h2δγ − 2hδα [β, δ] = 2hδ2

[β, γ ] = 3h2δ2 [γ, δ] = −2hδ2

(52)

deth K = 2

h2+ 2
(αδ − βγ + 2hβδ) . (53)

(c) Final remarks

For all theQ-spacetime algebras, time may be defined as proportional to trQ K (= 2x0 in
the undeformed case). The time generator obtained in this way is central only forM(1)

q

[12–14] and for the Minkowski algebra (44) (in fact, they are isomorphic: the entries of the
covariant vectorKε for M(1)

q satisfy the commutation relations (44) [1]).
The differential calculus on all the above Minkowski spaces may be easily discussed now

along the lines of [1, 23]; one could also investigate the role played in it by the contraction
relating [10] theq- and h-deformations. To conclude, let us mention that the additive
braided group structure [19–21] of all these algebras may be easily found. It suffices to
impose that equation (37) is also satisfied by the sumK ′ + K of two copiesK and K ′.
Using Hecke’s condition (RQ12 = R−1

Q21+ (ρ − ρ−1)P) this gives

RQK ′1R
(2)K2 = ±K2R

(3)K ′1(PR
†
QP)−1 + for q, h ∈ R − for q ∈ iR (54)

which is clearly preserved by (21); forM(1)
q , it reproduces the result of [24].
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[4] Drinfel’ d V G 1987Proc. Int. Congr. of Mathematicians 1986vol I, ed A Gleason (Berkeley, CA: MSRI)

p 798
Jimbo M 1985Lett. Math. Phys.10 63; 1986Lett. Math. Phys.11 247

[5] Faddeev L D, Reshetikhin N Yu and Takhtajan L A 1989Algebra i Analiz1 178 (Engl. trans. 1990Leningrad
Math. J.1 193)

[6] Demidov E E, Manin Yu I, Mukhin E E and Zhadanovich D V 1990Progr. Theor. Phys. Suppl.102 203
Dubois-Violette M and Launer G 1990Phys. Lett.245B 175
Zakrzeswki S 1991Lett. Math. Phys.22 287
Woronowicz S L 1991Rep. Math. Phys.30 259
Kupershmidt B A 1992 J. Phys. A: Math. Gen.25 L1239

[7] Ewen H, Ogievetsky O and Wess J 1991Lett. Math. Phys.22 297
[8] Karimipour V 1994Lett. Math. Phys.30 87
[9] Manin Yu I 1988 Quantum groups and non-commutative geometry, CRM, Université de Montŕeal; 1989
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