Deformed Minkowski spaces: classification and properties

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 291215
(http://iopscience.iop.org/0305-4470/29/6/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:09

Please note that terms and conditions apply.

Deformed Minkowski spaces: classification and properties

J A de Azcárraga \dagger and F Rodenas $\dagger \ddagger$
\dagger Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, E-46100 Burjassot (Valencia), Spain
\ddagger Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, E-46071 Valencia, Spain

Received 10 October 1995

Abstract

Using general but simple covariance arguments, we classify the 'quantum' Minkowski spaces for dimensionless deformation parameters. This requires a previous analysis of the associated Lorentz groups, which reproduces a previous classification by Woronowicz and Zakrzewski. As a consequence of the unified analysis presented, we give the commutation properties, the deformed (and central) length element and the metric tensor for the different spacetime algebras.

1. Introduction

Following the approach of [1], we present here a classification of the possible deformed Minkowski spaces (algebras). Our analysis, which provides a common framework for the properties of the various Minkowski spacetimes, requires the consideration of the two $\left(S L_{q}(2)\right.$ and $\left.S L_{h}(2)\right)$ deformations of $S L(2, C)$ and provides a characterization of the appropriate R-matrices defining the deformed Lorentz groups given in [2] (see also [3]).

It is well known that $G L(2, C)$ admits only two different deformations that possess a central determinant: one is the standard q-deformation $[4,5]$ and the other is the nonstandard or 'Jordanian' h-deformation [6-8]. Both $G L_{q}(2)$ and $G L_{h}(2)$ have associated 'quantum spaces' in the sense of [9]. These deformations (which may be shown to be related by contraction [10]) are defined as the associative algebras generated by the entries a, b, c, d of a matrix M, the commutation properties of which may be expressed by an 'FRT' equation [5]

$$
\begin{equation*}
R_{12} M_{1} M_{2}=M_{2} M_{1} R_{12} \tag{1}
\end{equation*}
$$

for a suitable R-matrix. Let us summarize their properties.
(a) For $G L_{q}(2)$ the R-matrix in (1) is $\left(\lambda \equiv q-q^{-1}\right)$
$R_{q}=\left[\begin{array}{cccc}q & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & 0 & q\end{array}\right] \quad \hat{R}_{q} \equiv \mathcal{P} R_{q}=\left[\begin{array}{cccc}q & 0 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & q\end{array}\right] \quad \mathcal{P} R_{q} \mathcal{P}=R_{q}^{t}$
where \mathcal{P} is the permutation operator $\left(\mathcal{P}=\mathcal{P}^{\dagger}, \mathcal{P}_{i j, k l}=\delta_{i l} \delta_{j k}\right)$, and the commutation relations defining the quantum group algebra are

$$
\begin{array}{lll}
a b=q b a & a c=q c a & a d-d a=\lambda b c \tag{3}\\
b c=c b & b d=q d b & c d=q d c .
\end{array}
$$

$\operatorname{Fun}\left(G L_{q}(2)\right)$ has a quadratic central element,

$$
\begin{equation*}
\operatorname{det}_{q} M:=a d-q b c \tag{4}
\end{equation*}
$$

where $\operatorname{det}_{q} M=1$ defines $S L_{q}(2)$. The matrix $\hat{R}_{q} \equiv \mathcal{P} R_{q}$ satisfies Hecke's condition

$$
\begin{equation*}
\hat{R}_{q}^{2}-\lambda \hat{R}_{q}-I=0 \quad\left(\hat{R}_{q}-q I\right)\left(\hat{R}_{q}+q^{-1} I\right)=0 \tag{5}
\end{equation*}
$$

and (we shall assume $q^{2} \neq-1$ [5] throughout) it has a spectral decomposition in terms of a rank-three projector P_{q+} and a rank-one projector P_{q-},

$$
\begin{gather*}
\hat{R}_{q}=q P_{q+}-q^{-1} P_{q-} \quad \hat{R}_{q}^{-1}=q^{-1} P_{q+}-q P_{q-} \tag{6}\\
{\left[\hat{R}_{q}, P_{q \pm}\right]=0 \quad P_{q \pm} \hat{R}_{q} P_{q \mp}=0} \\
P_{q+}=\frac{I+q \hat{R}_{q}}{1+q^{2}} \quad P_{q-}=\frac{I-q^{-1} \hat{R}_{q}}{1+q^{-2}}=\frac{1}{1+q^{-2}}\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & q^{-2} & -q^{-1} & 0 \\
0 & -q^{-1} & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] . \tag{7}
\end{gather*}
$$

The following relations have an obvious equivalent in the undeformed case:

$$
\epsilon_{q} M^{t} \epsilon_{q}^{-1}=M^{-1} \quad \epsilon_{q}=\left(\begin{array}{cc}
0 & q^{-1 / 2} \tag{8}\\
-q^{1 / 2} & 0
\end{array}\right)=-\epsilon_{q}^{-1} \quad P_{q-i j, k l}=\frac{-1}{[2]_{q}} \epsilon_{q i j} \epsilon_{q k l}^{-1} .
$$

The determinant of an ordinary 2×2 matrix may be defined as the proportionality coefficient in $(\operatorname{det} M) P_{-}:=P_{-} M_{1} M_{2}$ where P_{-}is given by (7) for $q=1$. In the $q \neq 1$ case the q determinant (4) may be expressed as

$$
\begin{equation*}
\left(\operatorname{det}_{q} M\right) P_{q-}:=P_{q-} M_{1} M_{2} \quad\left(\operatorname{det}_{q} M^{-1}\right) P_{q-}=M_{2}^{-1} M_{1}^{-1} P_{q-} \tag{9}
\end{equation*}
$$

$\left(\operatorname{det}_{q} M^{-1}=\left(\operatorname{det}_{q} M\right)^{-1}\right.$ and $\left.\left(\operatorname{det}_{q} M\right)^{\dagger} P_{q-}^{\dagger}=M_{2}^{\dagger} M_{1}^{\dagger} P_{q-}^{\dagger}\right)$.
(b) For $G L_{h}(2)$ the R-matrix in (1) is the solution of the Yang-Baxter equation given by

$$
R_{h}=\left[\begin{array}{cccc}
1 & -h & h & h^{2} \tag{10}\\
0 & 1 & 0 & -h \\
0 & 0 & 1 & h \\
0 & 0 & 0 & 1
\end{array}\right] \quad \hat{R}_{h} \equiv \mathcal{P} R_{h}=\left[\begin{array}{cccc}
1 & -h & h & h^{2} \\
0 & 0 & 1 & h \\
0 & 1 & 0 & -h \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathcal{P} R_{h} \mathcal{P}=R_{h}^{-1}
$$

(or $R_{h 12} R_{h 21}=I$, the triangularity condition) for which (1) gives
$[a, b]=h\left(\xi-a^{2}\right)$
$[a, c]=h c^{2}$
$[a, d]=h c(d-a)$
$[b, c]=h(a c+c d)$
$[b, d]=h\left(d^{2}-\xi\right)$
$[c, d]=-h c^{2}$
(so that $[a-d, c]=0$ follows), where ξ is the quadratic central element

$$
\begin{equation*}
\xi \equiv \operatorname{det}_{h} M=a d-c b-h c d \tag{12}
\end{equation*}
$$

Setting $\xi=1$ reduces $G L_{h}(2)$ to $S L_{h}(2)$. The matrix \hat{R}_{h} satisfies

$$
\begin{equation*}
\hat{R}_{h}^{2}=I \quad\left(I-\hat{R}_{h}\right)\left(I+\hat{R}_{h}\right)=0 \tag{13}
\end{equation*}
$$

It has two eigenvalues $(1$ and -1$)$ and a spectral decomposition in terms of a rank-three projector P_{h+} and a rank-one projector P_{h-}

$$
\begin{gather*}
\hat{R}_{h}=P_{h+}-P_{h-} \quad P_{h \pm} \hat{R}_{h}= \pm P_{h \pm} \tag{14}\\
P_{h+}=\frac{1}{2}\left(I+\hat{R}_{h}\right) \quad P_{h-}=\frac{1}{2}\left(I-\hat{R}_{h}\right)=\frac{1}{2}\left[\begin{array}{cccc}
0 & h & -h & -h^{2} \\
0 & 1 & -1 & -h \\
0 & -1 & 1 & h \\
0 & 0 & 0 & 0
\end{array}\right] . \tag{15}
\end{gather*}
$$

For $S L_{h}(2)$, the formulae equivalent to those in (8) are

$$
\begin{align*}
& \epsilon_{h} M^{t} \epsilon_{h}^{-1}=M^{-1} \\
& \epsilon_{h}=\left(\begin{array}{cc}
h & 1 \\
-1 & 0
\end{array}\right) \tag{16}\\
& \epsilon_{h}^{-1}=\left(\begin{array}{cc}
0 & -1 \\
1 & h
\end{array}\right) \quad P_{h-i j, k l}=\frac{-1}{2} \epsilon_{h i j} \epsilon_{h k l}^{-1}
\end{align*}
$$

Using P_{h-}, the deformed determinant and its inverse, $\operatorname{det}_{h} M$ and $\operatorname{det}_{h} M^{-1}$, (12) are also given by equations (9).

The quantum planes [9] associated with $S L_{q}(2)$ and $S L_{h}(2)$ are the associative algebras generated by two elements $(x, y) \equiv X$, the commutation properties of which (explicitly and in R-matrix form) are:
(a) for $S L_{q}$ (2) [9]

$$
\begin{equation*}
x y=q y x \quad \longleftrightarrow \quad R_{q} X_{1} X_{2}=q X_{2} X_{1} \tag{17}
\end{equation*}
$$

(b) for $S L_{h}(2)[7,8]$

$$
\begin{equation*}
x y=y x+h y^{2} \quad \longleftrightarrow \quad R_{h} X_{1} X_{2}=X_{2} X_{1} \tag{18}
\end{equation*}
$$

These commutation relations are preserved under transformations by the corresponding quantum groups matrices $\dagger M, X^{\prime}=M X$. This invariance statement, suitably extended to apply to the case of deformed Minkowski spaces, provides the essential ingredient for their classification.

From now on we shall often write $R_{Q}, P_{Q}(Q=q, h)$ to treat both deformations simultaneously. For instance, equations (17) and (18) may be jointly written as $R_{Q} X_{1} X_{2}=$ $\rho X_{2} X_{1}$, where $\rho=(q, 1)$ is the appropriate eigenvalue of R_{Q}.
\dagger The $G L_{q}(2)$ and $G L_{h}(2)$ matrices also preserve the ' q-symplectic' and ' h-symplectic' metrics ϵ_{q} (or $\epsilon_{q}{ }^{-1}$) and $\epsilon_{h}{ }^{-1}$, respectively.

2. Deformed Lorentz groups and associated Minkowski algebras

As is well known, the vector representation $D^{\frac{1}{2}, \frac{1}{2}}=D^{\frac{1}{2}, 0} \otimes D^{0, \frac{1}{2}}$ of the restricted Lorentz group may be given by the transformation $K^{\prime}=A K A^{\dagger}, A \in S L(2, C)$. The spacetime coordinates are contained in $K=K^{\dagger}=\sigma^{\mu} x_{\mu}$, where $\sigma^{0}=I$ and σ^{i} are the Pauli matrices; the time coordinate may be identified as $x^{0}=\frac{1}{2} \operatorname{tr}(K)$. Since det $K=\left(x_{0}\right)^{2}-x^{i} x_{i}=\operatorname{det} K^{\prime}$, the correspondence $\pm A \mapsto \Lambda \in S O(1,3)$, where $x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}$, realizes the covering homomorphism $S L(2, C) / Z_{2}=S O(1,3)$. A first step to obtain a deformation of the Lorentz group is to replace the $S L(2, C)$ matrices A above by the generator matrix M of $S L_{q}(2)$ [11-14].

In general, the full determination of a deformed Lorentz group requires the characterization of all possible commutation relations among the generators (a, b, c, d) of M and $\left(a^{*}, b^{*}, c^{*}, d^{*}\right)$ of M^{\dagger}, M being a deformation of $S L(2, C)$. The R-matrix form of these may be expressed in full generality by

$$
\begin{array}{ll}
R^{(1)} M_{1} M_{2}=M_{2} M_{1} R^{(1)} & M_{1}^{\dagger} R^{(2)} M_{2}=M_{2} R^{(2)} M_{1}^{\dagger} \\
M_{2}^{\dagger} R^{(3)} M_{1}=M_{1} R^{(3)} M_{2}^{\dagger} & R^{(4)} M_{1}^{\dagger} M_{2}^{\dagger}=M_{2}^{\dagger} M_{1}^{\dagger} R^{(4)} \tag{19}
\end{array}
$$

where $R^{(3) \dagger}=R^{(2)}=\mathcal{P} R^{(3)} \mathcal{P}$ (or the 'reality' condition \dagger for $R^{(3)}$) and $R^{(4)}=R^{(1) \dagger}$ or $R^{(4)}=\left(\mathcal{P} R^{(1)-1} \mathcal{P}\right)^{\dagger}$ since the first equation in (19) is invariant under the exchange $R^{(1)} \leftrightarrow \mathcal{P} R^{(1)-1} \mathcal{P}$.

Equations (19), which also follow (see, e.g., [15]) from the bi-spinor (dotted and undotted) description of 'quantum' spacetime in terms of a deformed K, will be taken as the starting point for the classification of the deformed Lorentz groups. In it, the matrix $R^{(1)}$ characterizes the appropriate deformation of the $S L(2, C)$ group $\left(R^{(1)}=R_{Q}\right), R^{(2)}$ (or $R^{(3)}$) defines how the elements of M and M^{\dagger} commute and it is not a priori fixed (but it must satisfy consistency relations with $R^{(1)}$, see equation (20) below) and $R^{(4)}$ gives the commutation relations for the complex conjugated generators contained in M^{\dagger}. The specification of the deformed Lorentz group will be completed by the commutation properties of the generators with their complex conjugated ones, i.e. by the determination of $R^{(2)}=R^{(3) \dagger}$.

The commutation relations of the deformed Lorentz group algebra generators (entries of M and M^{\dagger}) are given by equations (19). The consistency of these relations is assured if $R^{(1)}$ (and $R^{(4)}$) obey the Yang-Baxter equation (YBE) and $R^{(3)}$ and $R^{(2)}$ satisfy the mixed consistency equations [1, 16]
$R_{12}^{(1)} R_{13}^{(3)} R_{23}^{(3)}=R_{23}^{(3)} R_{13}^{(3)} R_{12}^{(1)} \quad R_{12}^{(4)} R_{13}^{(2)} R_{23}^{(2)}=R_{23}^{(2)} R_{13}^{(2)} R_{12}^{(4)}$
(these two equations are actually the same since either $R^{(4)}=R^{(1) \dagger}$ or $R^{(4)}=\left(\mathcal{P} R^{(1)-1} \mathcal{P}\right)^{\dagger}$ and $R^{(2)}=R^{(3) \dagger}$). It will be convenient to notice that the first equation, considered as an 'RTT' equation, indicates that $R^{(3)}$ is a representation of the deformed $G L(2, C)$ group, i.e. the matrix $R^{(3)}$ provides a 2×2 representation of the entries $M_{i j}$ of the generator matrix $M:\left(M_{i j}\right)_{\alpha \beta}=R_{i \alpha, j \beta}^{(3)}$. Thus, $R^{(3)}$ may be seen as a matrix in which the 2×2 blocks satisfy between themselves the same commutation relations that the entries of M do

$$
R^{(3)}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \quad \sim \quad M=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

\dagger This reality condition can be given in a more general form $R^{(3)} \dagger=\tau \mathcal{P} R^{(3)} \mathcal{P}$ for $|\tau|=1$; however, this phase factor can be eliminated by the redefinition $R^{(3)} \rightarrow \tau^{1 / 2} R^{(3)}$ (cf [2]).
and the problem of finding all possible Lorentz deformations is equivalent to finding all possible $R^{(3)}$ matrices with 2×2 block entries satisfying (3) or (11) such that $\mathcal{P} R^{(3)} \mathcal{P}=R^{(3) \dagger}$ ($\hat{R}^{(3)}=\hat{R}^{(3) \dagger}$).

To introduce the deformed Minkowski algebra $\mathcal{M}^{(j)}$ associated with a deformed Lorentz group $L^{(j)}$ (where the index j refers to the different cases) it is natural to extend $K^{\prime}=A K A^{\dagger}$ above to the deformed case by stating that in it the corresponding K generates a comodule algebra for the coaction ϕ defined by
$\phi: K \longmapsto K^{\prime}=M K M^{\dagger} \quad K_{i s}^{\prime}=M_{i j} M_{l s}^{\dagger} K_{j l} \quad K=K^{\dagger} \quad \Lambda=M \otimes M^{*}$
where it is assumed that the matrix elements of K, which now do not commute among themselves, commute with those of M and M^{\dagger}. As in (17), (18) for q-two-vectors (rather, two-spinors) we now demand that the commuting properties of the entries of K are preserved by (21). Extensive use has been made of covariance arguments to characterize the algebra generated by the entries of K, and the resulting equations are associated with the name of reflection equations $[17,18]$ or, in a more general setting, braided algebras $[19,20]$ of which the former constitute the 'algebraic sector' (for an introduction to braided geometry see [21]); similar equations were also early introduced in [16]. Let us now extend the arguments given in [1] to classify the deformed Lorentz groups and their associated Minkowski algebras in an unified way.

This is achieved by describing the commutation properties of the entries of the Hermitian matrix K generating a possible Minkowski algebra \mathcal{M} by means of a general reflection equation of the form

$$
\begin{equation*}
R^{(1)} K_{1} R^{(2)} K_{2}=K_{2} R^{(3)} K_{1} R^{(4)} \tag{22}
\end{equation*}
$$

where the $R^{(i)}$ matrices $(i=1, \ldots, 4)$ are those introduced in (19). Indeed, writing equation (22) for $K^{\prime}=M K M^{\dagger}$, it follows that the invariance of the commutation properties of K under the associated deformed Lorentz transformation (21) is achieved if relations (19) are satisfied.

The deformed Minkowski length and metric, invariant under a Lorentz transformation (21) of $L^{(j)}$, is defined through the quantum determinant of K. Since the two matrices $\hat{R}^{(1)}=\mathcal{P} R_{Q}$ have spectral decompositions (equations (6),(14)) with a rank-three projector P_{Q+} and a rank-one projector P_{Q-}, and the determinants of M, M^{\dagger} are central (equations (9), (12)), the Q-deformed and invariant (under (21)) determinant of the 2×2 matrix K may now be given by

$$
\begin{equation*}
\left(\operatorname{det}_{Q} K\right) P_{Q_{-}} P_{Q-}^{\dagger}=-\rho P_{Q_{-}} K_{1} \hat{R}^{(3)} K_{1} P_{Q_{-}}^{\dagger} . \tag{23}
\end{equation*}
$$

It is easy to check that $\left(P_{Q_{-}} P_{Q_{-}}^{\dagger}\right)^{2}=\left(\omega_{Q} /\left|[2]_{\rho}\right|\right)^{2} P_{Q_{-}} P_{Q_{-}}^{\dagger}$, where $\omega_{q}=|q|+\left|q^{-1}\right|$, $\omega_{h}=2+h^{2}$ and [2] $]_{1}=2$. In (23), the subindex Q in $\operatorname{det}_{Q} K$ indicates that it depends on q or h (or on other parameters on which $R^{(3)}$ may depend) and $\rho(=(q, 1)$ as before) has been added by convenience. Since $\hat{R}^{(3)}$ and K are Hermitian, $\operatorname{det}_{Q} K$ is real (if ρ is not real it may be factored out). We stress that the above formula provides a general expression for a central (see below) quadratic element which constitutes the deformed Minkowski length for all deformed spacetimes $\mathcal{M}^{(j)}$.

Similarly, it is possible to write in general the invariant scalar product of contravariant (transforming as the matrix K, equation (21)) and covariant (transforming by $Y \mapsto Y^{\prime}=$ $\left(M^{\dagger}\right)^{-1} Y M^{\dagger}$) matrices (four-vectors) as the quantum trace of a matrix product [1] (cf [5]). In the present general case, the deformed trace of a matrix B is defined by

$$
\begin{equation*}
\operatorname{tr}_{Q}(B):=\operatorname{tr}\left(\mathcal{D}_{Q} B\right) \quad \mathcal{D}_{Q}=\rho^{2} \operatorname{tr}_{(2)}\left(\mathcal{P}\left(\left(\left(R_{Q}\right)^{t_{1}}\right)^{-1}\right)^{t_{1}}\right) \tag{24}
\end{equation*}
$$

where $\operatorname{tr}_{(2)}$ means trace in the second space. This deformed trace is invariant under the quantum group coaction $B \mapsto M B M^{-1}$ since the expression of \mathcal{D}_{Q} above guarantees that $\mathcal{D}_{Q}^{t}=M^{t} \mathcal{D}_{Q}^{t}\left(M^{-1}\right)^{t}$ is fulfilled. In particular, the \mathcal{D}_{Q} matrices for R_{q} and R_{h} are found to be

$$
\mathcal{D}_{q}=\left(\begin{array}{cc}
q^{-1} & 0 \tag{25}\\
0 & q
\end{array}\right) \quad \mathcal{D}_{h}=\left(\begin{array}{cc}
1 & -2 h \\
0 & 1
\end{array}\right)
$$

Let us now find the expression of the metric tensor. Using ϵ_{Q} (cf equations (8), (16)) $\left(P_{Q-}\right)_{i j, k l}=-\left(1 /[2]_{\rho}\right) \epsilon_{Q i j} \epsilon_{Q k l}^{-1}$ and $\mathcal{D}_{Q}=-\epsilon_{Q}\left(\epsilon_{Q}^{-1}\right)^{t}\left(\mathcal{D}_{Q}^{t}=M^{t} \mathcal{D}_{Q}^{t}\left(M^{-1}\right)^{t}\right.$ now follow from $\epsilon_{Q} M^{t} \epsilon_{Q}^{-1}=M^{-1}$, equations (8) and (16)). The covariant $K_{i j}^{\epsilon}$ vector is

$$
\begin{equation*}
K_{i j}^{\epsilon}=\hat{R}_{Q i j, k l}^{\epsilon} K_{k l} \quad \hat{R}_{Q}^{\epsilon} \equiv\left(1 \otimes\left(\epsilon_{Q}^{-1}\right)^{t}\right) \hat{R}^{(3)}\left(1 \otimes\left(\epsilon_{Q}^{-1}\right)^{\dagger}\right) \tag{26}
\end{equation*}
$$

from which follows that the general Minkowski length and metric is given by
$l_{Q} \equiv \operatorname{det}_{Q} K=\frac{\rho}{\omega_{Q}} \operatorname{tr}_{Q} K K^{\epsilon} \equiv \rho^{2} g_{Q i j, k l} K_{i j} K_{k l} \quad g_{Q i j, k l}=\frac{\rho^{-1}}{\omega_{Q}} \mathcal{D}_{Q s i} \hat{R}_{Q j s, k l}^{\epsilon}$.
This concludes the unified description of all cases. Let us now look at their classification and specific properties.

3. Characterization of the Lorentz deformations

First we use the reality condition $R^{(3) \dagger}=\mathcal{P} R^{(3)} \mathcal{P}$ to reduce the number of independent parameters in $R^{(3)}$. It implies

$$
R^{(3)} \equiv\left[\begin{array}{cc}
A & B \tag{28}\\
C & D
\end{array}\right] \equiv\left[\begin{array}{llll}
a_{11} & a_{12} & b_{11} & b_{12} \\
a_{21} & a_{22} & b_{21} & b_{22} \\
c_{11} & c_{12} & d_{11} & d_{12} \\
c_{21} & c_{22} & d_{21} & d_{22}
\end{array}\right]=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{21}^{*} & b_{12} \\
a_{21} & a_{22} & b_{21} & b_{22} \\
a_{12}^{*} & c_{12} & a_{22}^{*} & c_{22}^{*} \\
b_{12}^{*} & c_{22} & b_{22}^{*} & d_{22}
\end{array}\right]
$$

where $a_{11}, d_{22}, b_{21}, c_{12}$ are real numbers and the rest are complex.
(a) Deformed Lorentz groups associated with $S L_{q}(2)$

Let now $M \in S L_{q}(2)$ and $R^{(1)}=R_{q}$, equation (2). The problem of finding the q-Lorentz groups associated with the standard deformation is now reduced to obtaining all matrices $R^{(3)}$ satisfying (20). This means that the 2×2 matrices A, B, C, D in (28) must satisfy the commutation relations in (3). This implies that (see [2]) $B^{2}=C^{2}=0, A D \sim I_{2}$ and that either B or C are zero. Now
(al) $B=0$ gives:

$$
R^{(3)}=\left[\begin{array}{cccc}
a_{11} & 0 & 0 & 0 \\
0 & a_{22} & 0 & 0 \\
0 & c_{12} & a_{22}^{*} & 0 \\
0 & 0 & 0 & d_{22}
\end{array}\right] \quad \text { with } a_{11}, d_{22}, c_{12} \in R
$$

From $A D \sim I_{2}$ it is easy to see (fixing first $a_{11}=1$) that $d_{22}=a_{22}^{*} / a_{22}$; its reality then implies $d_{22}= \pm 1, d_{22}=1$ when $a_{22} \in R$ and $d_{22}=-1$ for $a_{22} \in \mathrm{i} R$. The relation $A C=q C A$ forces $a_{22}=q^{-1}$ or $c_{12}=0$.
(a2) $C=0$ gives:

$$
R^{(3)}=\left[\begin{array}{cccc}
a_{11} & 0 & 0 & 0 \\
0 & a_{22} & b_{21} & 0 \\
0 & 0 & a_{22}^{*} & 0 \\
0 & 0 & 0 & d_{22}
\end{array}\right] \quad \text { with } a_{11}, d_{22}, b_{21} \in R, a_{11}=1
$$

as in the previous case, $d_{22}= \pm 1$ and $a_{22} \in R$ for $d_{22}=1$ and $a_{22} \in \mathrm{i} R$ for $d_{22}=-1$. Analogously, from $A B=q B A$ one obtains that $b_{21}=0$ or $a_{22}=q$.

Thus, the solutions for $R^{(3)}$ are as follows:

$$
\begin{align*}
& R^{(3)}=\left[\begin{array}{llll}
q & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & r & 1 & 0 \\
0 & 0 & 0 & q
\end{array}\right] \quad q \in R \quad r \in R \tag{29}\\
& R^{(3)}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & t & 0 & 0 \\
0 & 0 & \pm t & 0 \\
0 & 0 & 0 & \pm 1
\end{array}\right] \quad+\text { for } t \in R \quad-\text { for } t \in \mathrm{i} R \tag{30}\\
& R^{(3)} \tag{31}\\
& =\left[\begin{array}{cccc}
q^{-1} & 0 & 0 & 0 \\
0 & 1 & r & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & q^{-1}
\end{array}\right] \quad q \in R \quad r \in R \tag{32}\\
& R^{(3)}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & q^{-1} & 0 & 0 \\
0 & r & -q^{-1} & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \quad q \in \mathrm{i} R \quad r \in R \tag{33}\\
& R^{(3)}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & q & r & 0 \\
0 & 0 & -q & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \quad q \in \mathrm{i} R \quad r \in R
\end{align*}
$$

Remarks. Notice that, as anticipated, the Q-‘determinant' of all these $R^{(3)}$ matrices, computed as $\operatorname{det}_{Q} M$, is a scalar (and hence a commuting) 2×2 matrix.
$R_{q}^{\dagger}=\mathcal{P} R_{q} \mathcal{P}$ iff $q \in R$. Hence, $R_{12}^{(4)}=R_{q 21}$ or $R_{q 12}^{-1}$. Thus $\tilde{M} \equiv\left(M^{-1}\right)^{\dagger}$ provides a second copy of $S L_{q}(2)$, since then $R_{q} \tilde{M}_{1} \tilde{M}_{2}=\tilde{M}_{2} \tilde{M}_{1} R_{q}$.

The case (29) for $r=q-q^{-1}=\lambda\left(R^{(3)}=R_{q}\right)$ is the quantum Lorentz group of [12, 13] ($L_{q}^{(1)}$ in the notation of [1]). If $r \neq \lambda$ we obtain a 'gauged' version of it: $R^{(3)}=\mathrm{e}^{\alpha \sigma_{2}^{3}} R_{q} \mathrm{e}^{-\alpha \sigma_{2}^{3}}$ ($r=\lambda \mathrm{e}^{2 \alpha}$), where the subindex in σ_{2}^{3} refers to the second space.

The matrix (30) for $t=1$ and $q \in R$ corresponds to $L_{q}^{(2)}$ in [1].
The calculations leading to (30)-(33) require assuming $q^{2} \neq 1$. However, the solutions for $q \in R$ are also valid in the limit $q=1$ (see [2]); in this limit ($R^{(1)}=R^{(4)}=I_{4}$), the case (30) gives the deformed Lorentz group (twisted) of [22]. For $q=-1$, additional solutions appear and, although we shall not discuss these particular cases (see [2]), the associated Minkowski algebras may be obtained as in the general q case.

These results coincide with the classification in [2]: the solutions (30) correspond to equations (13) and (14) in [2]; similarly, (29), (31), (32) and (33) correspond to (74) (q real), (15), (74) (q imaginary) and (16) in [2].

(b) Deformed Lorentz groups associated with $S L_{h}(2)$

Now let $R^{(1)}=R_{h}$, equation (10). For h imaginary, $h \in \mathrm{i} R$, the matrix R_{h} satisfies the reality condition $R_{h}^{*}=R_{h}^{-1}\left(=\mathcal{P} R_{h} \mathcal{P}\right)$; this means that $\tilde{M} \equiv M^{*}$ defines a second copy of $S L_{h}(2)$ since $R_{h} M_{1}^{*} M_{2}^{*}=M_{2}^{*} M_{1}^{*} R_{h}$. The value of $h \in C \backslash\{0\}$, however, is not important. Indeed, quantum groups related with two different values of $h \in C$ are equivalent and their R matrices are related by a similarity transformation \dagger; thus, we can take $h \in R$ or even $h=1$.

Since the entries of M satisfy (11), the 2×2 blocks in $R^{(3)}$ (equation (28)) will now satisfy these commutation relations. This leads to (see [2]) $C=0$ so that, taking the h-'determinant' of $R^{(3)}$ equal I_{2}, the set of commutation relations reduces to

$$
\begin{equation*}
A D=I_{2} \quad[A, B]=h\left(I_{2}-A^{2}\right) \tag{34}
\end{equation*}
$$

By using them in (28), the following solutions for $R^{(3)}$ are found $(h \in R)$:

$$
\begin{align*}
R^{(3)} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & r & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad r \in R \tag{35}\\
R^{(3)} & =\left[\begin{array}{cccc}
1 & 0 & -h & 0 \\
-h & 1 & r & h \\
0 & 0 & 1 & 0 \\
0 & 0 & h & 1
\end{array}\right] \quad h \in R \quad r \in R . \tag{36}
\end{align*}
$$

Remarks. In (36), for $r=h^{2}$ we have $R^{(3)}=\left(\mathcal{P} R_{h} \mathcal{P}\right)^{t_{2}}$. However, the parameter r can be removed with an appropriate change of basis provided $h \neq 0$. For $h=0$, this is not possible and constitutes a different case, equation (35). This case is another example where the non-commutativity is solely due to $R^{(3)} \neq I_{4}$.

The cases (35), (36) correspond to (20) and (21) (cf equation (78) in [2]) in [2].

[^0]
4. Minkowski algebras: classification and properties

We now present here, in explicit form, the commutation relations for the generators of the deformed Minkowski spacetimes; they follow easily from (22) using the previous $R^{(3)}$ matrices. We saw in (19) that $R^{(3) \dagger}=R^{(2)}=\mathcal{P} R^{(3)} \mathcal{P}$ and $R^{(4)}=R^{(1) \dagger}$ or $R^{(4)}=\left(\mathcal{P} R^{(1)-1} \mathcal{P}\right)^{\dagger}$ (these two possibilities are the same for $Q=h$). Clearly, equation (22) allows for a factor in one side without impairing its invariance properties. This factor may be selected with the (natural) condition that the resulting Minkowski algebra does not contain generators α, β, \ldots, with the Grassmann-like property $\alpha^{2}=\beta^{2}=\cdots=0$. In terms of P_{Q+}, this is tantamount to requiring that $P_{Q+} K_{1} \hat{R}^{(3)} K_{1} P_{Q+}^{\dagger}$ must be non-zero. This leads to (cf equation (22)) the equations
$R_{Q} K_{1} R^{(2)} K_{2}= \pm K_{2} R^{(3)} K_{1} R_{Q}^{\dagger} \quad+$ for $q, h \in R \quad-\quad$ for $q \in \mathrm{i} R$.
In the q-case we might also consider $R^{(4)}=\left(\mathcal{P} R^{(1)-1} \mathcal{P}\right)^{\dagger}$. However, using Hecke's condition for $R^{(1)}$ it is seen that this leads to the same algebra as (37) with the restriction $\operatorname{det}_{q} K=0$, so that this case may be considered as included in the previous one.

An important ingredient is the centrality of the Q-determinant (23), $\left(\operatorname{det}_{Q} K\right) K=$ $K\left(\operatorname{det}_{Q} K\right)$, since it will correspond to the Minkowski length. Using twice (37) we find the following commutation property for three K matrices
$R_{Q 13} R_{Q 23} K_{1} R_{12}^{(2)} K_{2} R_{13}^{(2)} R_{23}^{(2)} K_{3}=K_{3} R_{13}^{(3)} R_{23}^{(3)} K_{1} R_{12}^{(2)} K_{2} R_{Q 13}^{\dagger} R_{Q 23}^{\dagger}$.
Multiplying from the right by $\mathcal{P}_{12} P_{Q-12}^{\dagger}$ and by P_{Q-12} from the left and using that R_{Q} and $R^{(3)}$ represent $G L_{Q}(2)$ and hence have a central Q-'determinant' represented by a scalar 2×2 matrix we get
$\left(\operatorname{det}_{Q} R_{Q}\right)\left(\operatorname{det}_{Q} R^{(3)}\right)^{\dagger}\left(\operatorname{det}_{Q} K\right) K=\left(\operatorname{det}_{Q} R_{Q}\right)^{\dagger}\left(\operatorname{det}_{Q} R^{(3)}\right) K\left(\operatorname{det}_{Q} K\right)$.
The scalar $\operatorname{det}_{Q} R^{(i)}$ matrices always cancel out in the cases below $\left(\operatorname{det}_{q} R_{q}=q I_{2}\right.$ and $\operatorname{det}_{h} R_{h}=I_{2}$) assuring the centrality of $\operatorname{det}_{Q} K$ (as may be checked by direct computation).
(a) q-Minkowski spaces associated with $S L_{q}(2)$
(1) Let us consider the case (29) for $r=\lambda$ (i.e. $R^{(3)}=R_{q}, q$ real). The commutation relations for the entries of $K=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ are

$$
\begin{array}{lll}
\alpha \beta=q^{-2} \beta \alpha & {[\delta, \beta]=q^{-1} \lambda \alpha \beta} & \alpha \gamma=q^{2} \gamma \alpha \\
{[\beta, \gamma]=q^{-1} \lambda(\delta-\alpha) \alpha} & {[\alpha, \delta]=0} & {[\gamma, \delta]=q^{-1} \lambda \gamma \alpha} \tag{40}
\end{array}
$$

they characterize the algebra $\mathcal{M}_{q}^{(1)}([12-14]$; see also [20, 23, 24, 1]). The Minkowski length is given by (23)

$$
\begin{equation*}
\operatorname{det}_{q} K=\alpha \delta-q^{2} \gamma \beta \tag{41}
\end{equation*}
$$

If $r \neq \lambda$, the commutation relations are slightly different; this, however, corresponds only to an appropriate election of the basis ('gauged' version of this Minkowski space).
(2) Let $R^{(3)}$ be given by (30). The centrality of the q-determinant implies that q and t are both real or both imaginary. The commutation relation for the entries of K and the q-Minkowski length (equation (23)) are (the $+\operatorname{sign}$ is for $q, t \in R$ and the - for $q, t \in \mathrm{i} R$)

$$
\begin{array}{lrr}
q \alpha \beta= \pm t \beta \alpha & t \alpha \gamma= \pm q \gamma \alpha & \alpha \delta=\delta \alpha \tag{42}\\
{[\beta, \gamma]= \pm t \lambda \alpha \delta} & \beta \delta= \pm q t \delta \beta & \delta \gamma= \pm q t \gamma \delta
\end{array}
$$

$$
\begin{equation*}
\operatorname{det}_{q, t} K=\frac{q+q^{-1}}{q \pm q^{-1}}(-q \gamma \beta \pm t \alpha \delta) \tag{43}
\end{equation*}
$$

Remarks. For $t=1$, these commutation relations correspond to the Minkowski algebra $\mathcal{M}_{q}^{(2)}[12,25,1]$ which is isomorphic to the quantum algebra $\dagger G L_{q}(2)$.

For $q=1$ and t real, we get the Minkowski space obtained in [22] (denoted $\mathcal{M}^{(3)}$ in [1]). This algebra and the corresponding deformed Poincaré algebra have been shown to be [27] a simple transformation (twisting) of the classical one. As a result, it is possible to remove the non-commuting character of the entries of K [28].
(3) Let us take $R^{(3)}$ as in (31) for $r=-\lambda\left(R^{(3)}=\mathcal{P} R_{q}^{-1} \mathcal{P}\right)$. Then,

$$
\begin{array}{lll}
{[\alpha, \beta]=q \lambda \beta \delta} & {[\alpha, \gamma]=-q \lambda \delta \gamma} & {[\alpha, \delta]=0} \\
{[\beta, \gamma]=q \lambda(\alpha-\delta) \delta} & \beta \delta=q^{2} \delta \beta & \gamma \delta=q^{-2} \delta \gamma \\
\operatorname{det}_{q} K=q^{2} \alpha \delta-\beta \gamma & \tag{45}
\end{array}
$$

This algebra may also be identified with the algebra of spacetime derivatives in [14] (see also [23]).
(4) Let $R^{(3)}$ be now given by (32). The Minkowski algebra and the central length are given by

$$
\begin{align*}
& \alpha \beta=-q^{-2} \beta \alpha \quad \delta \beta+\beta \delta=r \alpha \beta \quad \alpha \gamma=-q^{2} \gamma \alpha \\
& {[\beta, \gamma]=-q^{-1} \lambda \delta \alpha+r \alpha^{2} \quad[\alpha, \delta]=0 \quad \gamma \delta+\delta \gamma=r \gamma \alpha} \tag{46}\\
& \operatorname{det}_{q} K=\frac{-q[2]}{\lambda}\left(q^{-2} \alpha \delta+\gamma \beta\right) \tag{47}
\end{align*}
$$

(5) Finally, let $R^{(3)}$ be as in (33). Then

$$
\begin{array}{ll}
\alpha \beta+\beta \alpha=-r \beta \delta \quad \alpha \gamma+\gamma \alpha=-r \delta \gamma & {[\alpha, \delta]=0} \\
{[\beta, \gamma]=-q \lambda \alpha \delta+r \delta^{2} \quad \beta \delta=-q^{2} \delta \beta} & \gamma \delta=-q^{-2} \delta \gamma \\
\operatorname{det}_{q} K=\frac{-q[2]}{\lambda}\left(q^{2} \alpha \delta+\beta \gamma\right) & \tag{49}
\end{array}
$$

(b) Deformed Minkowski spaces associated with $S L_{h}(2)$
(1) Let $R^{(3)}$ be given first by (35) and let $R^{(1)}=R_{h}$, equation (10). Using (37) with the plus sign and (23), we find (h real)
$[\alpha, \beta]=-h \beta^{2}-r \beta \delta+h \delta \alpha-h \beta \gamma+h^{2} \delta \gamma \quad[\alpha, \delta]=h(\delta \gamma-\beta \delta)$
$[\alpha, \gamma]=h \gamma^{2}+r \delta \gamma-h \alpha \delta+h \beta \gamma-h^{2} \beta \delta \quad[\beta, \delta]=h \delta^{2}$
$[\beta, \gamma]=h \delta(\gamma+\beta)+r \delta^{2} \quad[\gamma, \delta]=-h \delta^{2}$
$\operatorname{det}_{h} K=\frac{2}{h^{2}+2}(\alpha \delta-\beta \gamma+h \beta \delta)$.
\dagger The Minkowski space of [26] is also a $G L_{q}(2)$-like space, but is different from the above.
(2) Let $R^{(3)}$ be given now by (36) with $r=0$. In this case

$$
\begin{align*}
& {[\alpha, \beta]=2 h \alpha \delta+h^{2} \beta \delta \quad[\alpha, \delta]=2 h(\delta \gamma-\beta \delta)} \\
& {[\alpha, \gamma]=-h^{2} \delta \gamma-2 h \delta \alpha \quad[\beta, \delta]=2 h \delta^{2}} \tag{52}\\
& {[\beta, \gamma]=3 h^{2} \delta^{2} \quad[\gamma, \delta]=-2 h \delta^{2}} \\
& \operatorname{det}_{h} K=\frac{2}{h^{2}+2}(\alpha \delta-\beta \gamma+2 h \beta \delta) \tag{53}
\end{align*}
$$

(c) Final remarks

For all the Q-spacetime algebras, time may be defined as proportional to $\operatorname{tr}_{Q} K\left(=2 x^{0}\right.$ in the undeformed case). The time generator obtained in this way is central only for $\mathcal{M}_{q}^{(1)}$ [12-14] and for the Minkowski algebra (44) (in fact, they are isomorphic: the entries of the covariant vector K^{ϵ} for $\mathcal{M}_{q}^{(1)}$ satisfy the commutation relations (44) [1]).

The differential calculus on all the above Minkowski spaces may be easily discussed now along the lines of $[1,23]$; one could also investigate the role played in it by the contraction relating [10] the q - and h-deformations. To conclude, let us mention that the additive braided group structure [19-21] of all these algebras may be easily found. It suffices to impose that equation (37) is also satisfied by the sum $K^{\prime}+K$ of two copies K and K^{\prime}. Using Hecke's condition $\left(R_{Q 12}=R_{Q 21}^{-1}+\left(\rho-\rho^{-1}\right) \mathcal{P}\right)$ this gives

$$
\begin{equation*}
R_{Q} K_{1}^{\prime} R^{(2)} K_{2}= \pm K_{2} R^{(3)} K_{1}^{\prime}\left(\mathcal{P} R_{Q}^{\dagger} \mathcal{P}\right)^{-1} \quad+\text { for } q, h \in R \quad-\quad \text { for } q \in \mathrm{i} R \tag{54}
\end{equation*}
$$

which is clearly preserved by (21); for $\mathcal{M}_{q}^{(1)}$, it reproduces the result of [24].

Acknowledgments

This article has been partially supported by a research grant from the CICYT, Spain. The authors are indebted to P P Kulish for many useful discussions.

References

[1] de Azcárraga J A, Kulish P P and Rodenas F 1994 Quantum groups and deformed special relativity Preprint hep-th/9405161 (revised April 1995) Fortschr. Phys. to appear
[2] Woronowicz S L and Zakrzewski S 1994 Compositio Math. 94211
[3] Podles P and Woronowicz S 1995 On the classification of quantum Poincaré groups Preprint hep-th/9412059
[4] Drinfel'd V G 1987 Proc. Int. Congr. of Mathematicians 1986 vol I, ed A Gleason (Berkeley, CA: MSRI) p 798
Jimbo M 1985 Lett. Math. Phys. 10 63; 1986 Lett. Math. Phys. 11247
[5] Faddeev L D, Reshetikhin N Yu and Takhtajan L A 1989 Algebra i Analiz 1178 (Engl. trans. 1990 Leningrad Math. J. 1 193)
[6] Demidov E E, Manin Yu I, Mukhin E E and Zhadanovich D V 1990 Progr. Theor. Phys. Suppl. 102203
Dubois-Violette M and Launer G 1990 Phys. Lett. 245B 175
Zakrzeswki S 1991 Lett. Math. Phys. 22287
Woronowicz S L 1991 Rep. Math. Phys. 30259
Kupershmidt B A 1992 J. Phys. A: Math. Gen. 25 L1239
[7] Ewen H, Ogievetsky O and Wess J 1991 Lett. Math. Phys. 22297
[8] Karimipour V 1994 Lett. Math. Phys. 3087
[9] Manin Yu I 1988 Quantum groups and non-commutative geometry, CRM, Université de Montréal; 1989 Commun. Math. Phys. 123 163; 1991 Topics in Non-commutative Geometry (Princeton, NJ: Princeton University Press)

Wess J and Zumino B 1990 Nucl. Phys. (Proc. Suppl.) B 18 302-12
[10] Aghamohammadi A, Khorrami M and Shariati A 1995 J. Phys. A: Math. Gen. 28 L225
[11] Podleś P and Woronowicz S 1990 Commun. Math. Phys. 130381
[12] Carow-Watamura U, Schlieker M, Scholl M and Watamura S 1990 Z. Phys. C 48 159; 1991 Int. J. Mod. Phys. A 63081
[13] Schmidke W, Wess J and Zumino B 1991 Z. Phys. C 52471
[14] Ogievetsky O, Schmidke W B, Wess J and Zumino B 1992 Commun. Math. Phys. 150495
[15] de Azcárraga J A, Kulish P P and Rodenas F 1994 Czech. J. Phys. 44981
[16] Freidel L and Maillet J M 1991 Phys. Lett. 262B 278
[17] Kulish P P and Sklyanin E K 1992 J. Phys. A: Math. Gen. 255963
[18] Kulish P P and Sasaki R 1993 Progr. Theor. Phys. 89741
[19] Majid S 1992 Quantum Groups (Lecture Notes in Mathematics 1510) p 79; 1991 J. Math. Phys. 323246
[20] Majid S 1993 J. Math. Phys. 34 1176; 1993 Commun. Math. Phys. 156607
[21] Majid S 1994 Introduction to braided geometry and q-Minkowski space, Varenna lectures Preprint DAMTP/94-68
[22] Chaichian M and Demichev A 1993 Phys. Lett. 304B 220; 1995 J. Math. Phys. 36398
[23] de Azcárraga J A, Kulish P P and Rodenas F 1994 Lett. Math. Phys. 32173
[24] Meyer U 1993 The q-Lorentz group and braided coaddition on q-Minkowski space Preprint DAMTP 93-45 (revised January 1994)
Majid S and Meyer U 1994 Z. Phys. C 63357
[25] Majid S 1994 J. Math. Phys. 35 5025; 1995 Some remarks of the q-Poincaré algebra in R-matrix form Preprint DAMTP/95-08, q-alg/9502014
[26] Dobrev V K 1994 Phys. Lett. 341B 133
[27] Lukierski J, Ruegg H, Tolstoi V N and Nowicki A 1994 J. Phys. A: Math. Gen. 272389
[28] de Azcárraga J A, Kulish P P and Rodenas F 1995 Phys. Lett. 351B 123

[^0]: \dagger Quantum groups associated with R_{h} and $R_{h=1}$ are related by a similarity transformation defined by the 2×2 matrix $S=\operatorname{diag}\left(h^{-1 / 2}, h^{1 / 2}\right): R_{h=1}=(S \otimes S) R_{h}(S \otimes S)^{-1}$.

