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Abstract. Using general but simple covariance arguments, we classify the ‘quantum’
Minkowski spaces for dimensionless deformation parameters. This requires a previous analysis
of the associated Lorentz groups, which reproduces a previous classification by Woronowicz
and Zakrzewski. As a consequence of the unified analysis presented, we give the commutation
properties, the deformed (and central) length element and the metric tensor for the different
spacetime algebras.

1. Introduction

Following the approach of [1], we present here a classification of the possible deformed
Minkowski spaces (algebras). Our analysis, which provides a common framework for
the properties of the various Minkowski spacetimes, requires the consideration of the two
(SL,(2) and SL,(2)) deformations ofSL(2, C) and provides a characterization of the
appropriateR-matrices defining the deformed Lorentz groups given in [2] (see also [3]).

It is well known thatGL (2, C) admits only two different deformations that possess
a central determinant: one is the standardeformation [4,5] and the other is the non-
standard or ‘Jordaniam-deformation [6-8]. BothGL,(2) and GL,(2) have associated
‘quantum spaces’ in the sense of [9]. These deformations (which may be shown to be
related by contraction [10]) are defined as the associative algebras generated by the entries
a, b, c, d of a matrixM, the commutation properties of which may be expressed byrm °
equation [5]

Ri1oM1Mp = MaM1R12 (1)
for a suitableR-matrix. Let us summarize their properties.

(@) ForGL,(2) the R-matrix in (1)is ¢ =¢q — ¢~ %)

g 0 00 g 0 0O
01 00 . 0O A 1 0

Re=| 0 1. Ry=Pr=| o PR,P =R,  (2)
0 00g 000 g
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1216 J A de Azafraga and F Rodenas

whereP is the permutation operatoP(= PT, Pij = 8i8jx), and the commutation relations
defining the quantum group algebra are

ab = qba ac =qca ad —da = \Abc

bc =cb bd = qdb cd = gdc. @)
Fun(GL,(2)) has a quadratic central element,

det, M := ad — gbc (4)
where def M = 1 definesSL,(2). The matrixR, = PR, satisfies Hecke’s condition

RZ—AR,—1=0 (R, —qD(R,+¢7*1) =0 (5)

and (we shall assumg # —1 [5] throughout) it has a spectral decomposition in terms of
a rank-three projectoP,;. and a rank-one projecta?,_,

Ry=qPyy—q 'Pp- RM=q Py —qP, ©
[R,, P,x] =0 PR, P =0
0 0 0 0
I+4qR, I—q 'R, 1 0 ¢% —¢' 0
g+ = 1 2 - = 1 2 = 1 2 1 (7)
+4q +4q +4q 0 —gq 1 0
0 0 0 0
The following relations have an obvious equivalent in the undeformed case:
0 q 1/2 _1
t—1_ a1 _ _ _ 1 e
GqM Gq =M € = ( _ql/z 0 ) - 6q qu ij.kl [z]qeq ljeq kl -
(8)

The determinant of an ordinary<2 matrix may be defined as the proportionality coefficient
in (detM)P_ := P_M;M, where P_ is given by (7) forg=1. In theq # 1 case the;-
determinant (4) may be expressed as

(det, M)P,_ := P,_MiM; (det, M™HP,_ = M;'M[ TP, 9)
(det, M~* = (det, M)~! and (det, M) P}_ = Mjm]P]).

(b) For GL;(2) the R-matrix in (1) is the solution of the Yang—Baxter equation given
by

1 —h h N 1 —h h R

0 1 0 —h . 0 0 1 h 1
R, = R, =PR;, = PR,P =R,

0 0 1 & 0 0 —h

0 0 0 1 0O 0 0 1

(10)

(or R,12R, 21 = I, the triangularity condition) for which (1) gives
a,bl = h(E —a® a,c] = hc? a,d] = he(d — a)
[a, D] [a, c] [a,d] (1)

[b, c] = h(ac + cd) [b,d] = h(d?— &) [c,d] = —hc?
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(so that i — d, c] = O follows), wheret is the quadratic central element

g =dey, M =ad — cb — hed . (12)
Settingé = 1 reducesGL;,(2) to SL,(2). The matrix R, satisfies

R2=1 (I — R + Ry =0. (13)

It has two eigenvalues (1 andl) and a spectral decomposition in terms of a rank-three
projector P, and a rank-one projecta?;,

Ry = Py — P PieRy = £ Py (14)

0 h —h —h?

1 R 1 R 11 0 1 -1 -—nh 15
Po.=-(I+R Po_=-(I—-Rp =<2
ht 2( + Rp) h 2( i) 2l 0 21 1 1 (15)
0 0 O 0
For SL;(2), the formulae equivalent to those in (8) are
h o1
aeMet=M1 €, = ( )
-1 0
(16)

E_l: 0 -1 Ph ikl = ;16;,“6_1
h 1 h -1, 2 U~hkl-

Using P,_, the deformed determinant and its inverse,, détand def M1, (12) are also
given by equations (9).

The quantum planes [9] associated with, (2) and SL,(2) are the associative algebras
generated by two elements, y) = X, the commutation properties of which (explicitly and
in R-matrix form) are:

(a) for SL,(2) [9]

xy=qyx <— R, X1Xo=qX>Xy a7
(b) for SL,(2) [7, 8]
xy =yx +hy? <«— RyX1Xo= X,X1. (18)

These commutation relations are preserved under transformations by the corresponding
guantum groups matricesM, X’ = M X. This invariance statement, suitably extended to
apply to the case of deformed Minkowski spaces, provides the essential ingredient for their
classification.

From now on we shall often writ&k,, Py (Q = ¢, h) to treat both deformations
simultaneously. For instance, equations (17) and (18) may be jointly writt@® 35X, =
pX2X1, wherep = (¢, 1) is the appropriate eigenvalue &f.

T The GL,(2) andGL;(2) matrices also preserve the-symplectic’ and #-symplectic’ metrics, (or eqfl) and
e, L, respectively.
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2. Deformed Lorentz groups and associated Minkowski algebras

As is well known, the vector representatidr-z = D2:° ® D% of the restricted Lorentz
group may be given by the transformatidi = AKA', A € SL(2, C). The spacetime
coordinates are contained it = K' = o/x,,, whereo® = I ando’ are the Pauli matrices;
the time coordinate may be identified-eb= J tr(K). Since dek = (x0)?—x'x; = detk’,
the correspondencgA — A € SO(1,3), wherex™ = A’ x", realizes the covering
homomorphismSL(2,C)/Z, = SO(1,3). A first step to obtain a deformation of the
Lorentz group is to replace th&€L (2, C) matricesA above by the generator matri¥ of
SL,(2) [11-14].

In general, the full determination of a deformed Lorentz group requires the
characterization of all possible commutation relations among the generatérs:(d) of
M and @*, b*, ¢*, d*) of MT, M being a deformation o§L(2, C). The R-matrix form of
these may be expressed in full generality by

ROYM My = MaM RY M{R®M, = MyR® M| 19
o 19
MIR®M; = M;R® M} ROMIM) = MiMIR®

where R®T = R@® = PROP (or the ‘reality’ conditiorf for R®) and R® = RMT
or R® = (PRY-1IP)T since the first equation in (19) is invariant under the exchange
RY « PRD-1p,

Equations (19), which also follow (see, e.g., [15]) from the bi-spinor (dotted and
undotted) description of ‘quantum’ spacetime in terms of a deforkiedwill be taken
as the starting point for the classification of the deformed Lorentz groups. In it, the matrix
RY characterizes the appropriate deformation of g2, C) group RY = Ry), R®
(or R®) defines how the elements @f and M’ commute and it is not priori fixed
(but it must satisfy consistency relations witf!, see equation (20) below) an’®
gives the commutation relations for the complex conjugated generators contaiféd in
The specification of the deformed Lorentz group will be completed by the commutation
properties of the generators with their complex conjugated ones, i.e. by the determination
of R® = RO,

The commutation relations of the deformed Lorentz group algebra generators (entries
of M and M") are given by equations (19). The consistency of these relations is assured if
R (and R™) obey the Yang—Baxter equatiomsg) and R® and R® satisfy the mixed
consistency equations [1, 16]

@ pB3 pB 3) pB) pH) @ p2) p2) 2 p2 p@&
Ri5 Ri3Ry3 = Ry Ri3 Ry Ri5; Ri3Ry3 = Ryz Ri3 Ry, (20)

(these two equations are actually the same since eRffee= RV T or R = (PR ~1p)f

and R®@ = R® 1), It will be convenient to notice that the first equation, considered as an
‘RTT’ equation, indicates thakR® is a representation of the deforméd.(2, C) group, i.e.

the matrix R®® provides a X2 representation of the entriéd;; of the generator matrix
M: (Mij)ap = RS ;5. Thus,R® may be seen as a matrix in which the 2 blocks satisfy
between themselves the same commutation relations that the entri¢siof

A B a b
R® = ~ M=
C D c d
1 This reality condition can be given in a more general fakf® T = :PROP for |r| = 1; however, this phase
factor can be eliminated by the redefinitiat® — t1/2R® (cf [2]).
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and the problem of finding all possible Lorentz deformations is equivalent to finding all
possibleR® matrices with %2 block entries satisfying (3) or (11) such tHaR®P = ROf
(IQ(3) — IQ(B)T)_

To introduce the deformed MinkowsklgebraM ) associated with a deformed Lorentz
groupL’ (where the indey refers to the different cases) it is natural to extéfid= AK Af
above to the deformed case by stating that in it the corresporidiggnerates a comodule
algebra for the coactiop defined by

¢:Kr— K' =MKM! K| = MM} K; K =K' A=MeM* (21)

where it is assumed that the matrix elementskqf which now do not commute among
themselves, commute with those &f and M'. As in (17), (18) forg-two-vectors (rather,
two-spinor9 we now demand that the commuting properties of the entriés afe preserved
by (21). Extensive use has been made of covariance arguments to characterize the algebra
generated by the entries &f, and the resulting equations are associated with the name of
reflection equations [17, 18] or, in a more general setting, braided algebras [19, 20] of which
the former constitute the ‘algebraic sector’ (for an introduction to braided geometry see [21]);
similar equations were also early introduced in [16]. Let us now extend the arguments given
in [1] to classify the deformed Lorentz groups and their associated Minkowski algebras in
an unified way.

This is achieved by describing the commutation properties of the entries of the Hermitian
matrix K generating a possible Minkowski algebrd by means of a general reflection
equation of the form

RYK1RPK, = KoRPKRY (22)

where theR®” matrices{ = 1, ..., 4) are those introduced in (19). Indeed, writing equation
(22) for K’ = MK M, it follows that the invariance of the commutation propertieskof
under the associated deformed Lorentz transformation (21) is achieved if relations (19) are
satisfied.

The deformed Minkowski length and metric, invariant under a Lorentz transformation
(21) of LY, is defined through the quantum determinantkaf Since the two matrices
RY = PR, have spectral decompositions (equations (6), (14)) with a rank-three projector
Py and a rank-one projectaP,_, and the determinants @, M are central (equations
(9), (12)), the 9-deformedand invariant (under (21)) determinant of thex2 matrix K
may now be given by

(dety K)Po_P},_ = —pPo_KiRPKyP)y_. (23)

It is easy to check thatPo_ P} )2 = (wo/I[2],l)"Po-P)_, wherew, = lq| + I,

wp, = 2+ h? and [2} = 2. In (23), the subindex? in dety K indicates that it depends on

g or h (or on other parameters on whi@® may depend) ang (= (¢, 1) as before) has

been added by convenience. Sit® andK are Hermitian, dei K is real (if p is not real

it may be factored out). We stress that the above formula provides a general expression for
a central (see below) quadratic element which constitutesi¢fiermed Minkowski length

for all deformed spacetimest).

Similarly, it is possible to write in general the invariant scalar produatarftravariant
(transforming as the matriX, equation (21)) andovariant (transforming byY +— Y’ =
(M")~ty M") matrices (four-vectors) as the quantum trace of a matrix product [1] (cf [5]).
In the present general case, the deformed trace of a matisxdefined by

tro(B) := tr(DgyB) Do = p?try(P((Rp)™)™H™) (24)
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where tf,) means trace in the second space. This deformed trace is invariant under the
quantum group coactioB > M BM~! since the expression @, above guarantees that
D’Q = M’D’Q(M‘l)f is fulfilled. In particular, theD, matrices forR, and R;, are found to

be
gt 0 1 —2hn
pqz( ) p],:( ) (25)
0 ¢ 0 1

Let us now find the expression of the metric tensor. Usigg(cf equations (8), (16))

(P )iju = —(1/[2),)€gijegy and Dy = —ep(egh) (Dy = M'Diy(M~1)" now follow

from eQM’eél = M~1, equations (8) and (16)). The covariakif; vector is
K§=Ry,uka  Ry=1(;H"RPA® (M) (26)

from which follows that the general Minkowski length and metric is given by
p p~t 5

lQ EderQK = ;trQ KK¢ = ngQi_kalKinkl goijki = TDQSiREQ_i.Y,kI' (27)
0 0

This concludes the unified description of all cases. Let us now look at their classification
and specific properties.

3. Characterization of the Lorentz deformations

First we use the reality conditioR®f = PR®P to reduce the number of independent
parameters irR®. It implies

aiy aip bir bi ayy aip ay b
e A B a1 azy ba1 by azy az by by o8
B C D - : c dii d T oar, e ai, ¢ (28)
€11 C12 di1 412 12 €12 dpp Cpp
c21 C22 do1 d2 12 €2 b3 dx

whereays, doo, bo, c12 are real numbers and the rest are complex.

(a) Deformed Lorentz groups associated with@)

Let now M € SL,(2) and RY = R,, equation (2). The problem of finding theLorentz
groups associated with the standard deformation is now reduced to obtaining all matrices
R® satisfying (20). This means that thec2 matricesA, B, C, D in (28) must satisfy the
commutation relations in (3). This implies that (see [Bf = C?> = 0, AD ~ I, and that
either B or C are zero. Now

(al) B =0 gives:
all 0 0 0

O ano O 0 .
RO® — with a1, d22, c12 € R.
0 c12 a5, O

0 0 0 dx

From AD ~ I it is easy to see (fixing first11 = 1) thatdyy = a3,/azs; its reality then
implies dy; = +1, do; = 1 whenay, € R anddy; = —1 for ax, € iR. The relation
AC = gCA forcesaz = gt or c1» = 0.
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(a2) C =0 gives:
ai 0 0 0
0 ao b21 0 .
R® = with aq1, doo, b1 € R, a1 = 1.
0 0 a5, O
0O O 0 dy

as in the previous caséy, = +1 anday, € R for d; = 1 andags € iR for dyy = —1.
Analogously, fromAB = g BA one obtains thaby; = 0 oraz, = q.

Thus, the solutions foR® are as follows:

¢ 0 0 O
0 1 0O
R® = 0 L o geR reRr (29)
r
| 0 0 0g
1 0 O 0
0+t 0 O _
R® — 0 0 & o + forre R — forteiR (30)
t
00 0 +1
T¢g1 00 O
0O 1 r O
R® = o o 1 geR reR (31)
L 0 0 ¢g7*
1 0 0 0
0 ¢! 0
R® = 0 9 geiR reR (32)
r —-q
0o 0 o0 -1
1 0 0O 0
0 r
R® = Oz 0 g€iR reRr (33)
—-q
00 0 -1

Remarks. Notice that, as anticipated, th@-‘determinant’ of all theseR® matrices,
computed as dgtM, is a scalar (and hence a commutingd2matrix.

Ry = PR,P iff ¢ € R. Hence,R{y = Ryp1 of R.5. ThusM = (M~ provides a
second copy ofL,(2), since thenR, M1 M, = MoMiR,.
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The case (29) for = g —g~1 = 1 (R® = R,) is the quantum Lorentz group of [12, 13]
(LY in the notation of [1]). Ifr # A we obtain a ‘gauged’ version of iR® = e*% R e o7
(r = Ae), where the subindex in; refers to the second space.

The matrix (30) forr = 1 andg € R corresponds td,;” in [1].

The calculations leading to (30)—(33) require assungifig: 1. However, the solutions
for ¢ € R are also valid in the limity = 1 (see [2]); in this limit Y = R® = I,), the case
(30) gives the deformed Lorentz group (twisted) of [22]. goe —1, additional solutions
appear and, although we shall not discuss these particular cases (see [2]), the associated
Minkowski algebras may be obtained as in the gengrease.

These results coincide with the classification in [2]: the solutions (30) correspond to
equations (13) and (14) in [2]; similarly, (29), (31),(32) and (33) correspond to 4) (
real), (15), (74) § imaginary) and (16) in [2].

(b) Deformed Lorentz groups associated with,@L

Now let R = R, equation (10). For imaginary, < iR, the matrix R, satisfies the
reality conditionR; = Rh‘l (= PR,P); this means thad? = M* defines a second copy of
SL;(2) sinceRyMiM; = M;M;R,. The value ofh € C\{0}, however, is not important.
Indeed, quantum groups related with two different values efC are equivalent and their
R matrices are related by a similarity transformatiothus, we can také& € R or even
h=1.

Since the entries oM satisfy (11), the 22 blocks inR® (equation (28)) will now
satisfy these commutation relations. This leads to (see 2B 0 so that, taking the
h-‘determinant’ of R® equall,, the set of commutation relations reduces to

AD=1, [A, B] = h(l, — A?). (34)

By using them in (28), the following solutions f&® are found & € R):

100 0
01r 0
R® = reR (35)
0010
| 0001
1 0 —h O
—h 1 r h
R® = heR reR. (36)
0 0 1 O
| 0 0 n 1

Remarks. In (36), forr = h? we haveR® = (PR, P)"2. However, the parameter can
be removed with an appropriate change of basis provided 0. Fori = 0, this is not
possible and constitutes a different case, equation (35). This case is another example where
the non-commutativity is solely due ®® # I,.

The cases (35), (36) correspond to (20) and (21) (cf equation (78) in [2]) in [2].

1 Quantum groups associated wiit) and R,—; are related by a similarity transformation defined by the22
matrix § = diagh Y2, h2): Ry_1 = (S® S)R(S® $)~L.
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4. Minkowski algebras: classification and properties

We now present here, in explicit form, the commutation relations for the generators of
the deformed Minkowski spacetimes; they follow easily from (22) using the previous
R® matrices. We saw in (19) thaR®’ = R® = PR®P and R® = RMT or

R® = (PRYW-1P)T (these two possibilities are the same f@r= 4). Clearly, equation

(22) allows for a factor in one side without impairing its invariance properties. This factor
may be selected with the (natural) condition that the resulting Minkowski algebra does not
contain generators, g, . . ., with the Grassmann-like proper®f = % = --- = 0. In terms

of Py,, this is tantamount to requiring thelJtQ1L1(11§(3>I<1P;+ must be non-zero. This
leads to (cf equation (22)) the equations

RoK1RPKp = +K,RPK1R), + forqg,he R — forg eiR. (37)

In the g-case we might also consid&®® = (PR -1P)I. However, using Hecke’s
condition for R® it is seen that this leads to the same algebra as (37) with the restriction
det, K = 0, so that this case may be considered as included in the previous one.

An important ingredient is the centrality of th@-determinant (23),(dety K)K =
K (dety K), since it will correspond to the Minkowski length. Using twice (37) we find the
following commutation property for thre& matrices

Ro13Ro23K1RG K2R3 RSy K3 = K3R{3 RSy K1R K2R) 3R 55. (38)
Multiplying from the right byPlng_ 12 and by Py_ 1, from the left and using thak, and

R® representGL,(2) and hence have a centr@-‘determinant’ represented by a scalar
2x2 matrix we get

(dety Rp)(dety R®)T (dety K)K = (dety Rp)'(dety R®) K (dety K) . (39)

The scalar degf R matrices always cancel out in the cases below,(#get= ¢/, and
det, R, = I») assuring the centrality of dgtk (as may be checked by direct computation).

(a) g-Minkowski spaces associated with,&)

(1) Let us consider the case (29) for= 1 (i.e. R® = R,, ¢ real). The commutation
relations for the entries ok = (‘; f) are

af =q *B [6.8l=q""2ap  ay =q’ya

[B.7] =q A — ) [.8]=0  [r.8] =q "Aye

they characterize the algebt\af{l) ([12—14]; see also [20, 23, 24, 1]). The Minkowski length
is given by (23)

det, K = a8 — ¢%yp. (41)

If » # A, the commutation relations are slightly different; this, however, corresponds only
to an appropriate election of the basis (‘gauged’ version of this Minkowski space).

(40)

(2) Let R® be given by (30). The centrality of thg-determinant implies thag and ¢
are both real or both imaginary. The commutation relation for the entrie§ ahd the
g-Minkowski length (equation (23)) are (the sign is forg, t € R and the— for ¢, € iR)

quopf = £tBa tay = tgya ad = da
(42)
[8, y] = £trad B8 = +qt3p 8y = xqtyé
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q+q"

det ;K =
K=

(—qyB L tad). (43)

Remarks. Fort = 1, these commutation relations correspond to the Minkowski algebra
Mfﬁ [12, 25, 1] which is isomorphic to the quantum algebeaL, (2).

For ¢ = 1 andr real, we get the Minkowski space obtained in [22] (denateé in
[1]). This algebra and the corresponding deformed Pomedgebra have been shown to
be [27] a simple transformation (twisting) of the classical one. As a result, it is possible to
remove the non-commuting character of the entrie€ d28].

(3) Letus takeR® as in (31) forr=—1 (R® = PR_*P). Then,
[a, B] = qABS [a, y] = —qAdy [@,8] =0
[B. 7] = qh(a — 8)8 BS = q°3p y8 =q %8y

de, K = q°as — By . (45)

This algebra may also be identified with the algebra of spacetime derivatives in [14] (see
also [23]).

(4) Let R® be now given by (32). The Minkowski algebra and the central length are given
by

(44)

af = —q pa 8B+ Bs =rap ay = —¢°ya

(46)
(B, 7] = —¢ *Aéa + ra [e,8]1=0 y§+ 8y =rya
—q[2
det, K = %(q—zas +vB). (47)
(5) Finally, let R® be as in (33). Then
aBf + Ba = —rps ay +ya = —rdy [¢,8] =0
(48)
[B.v] =—qrad +r8®  BS=—q%B  ys=—q 8y
—q[2
det, K = %(qzaa + By). (49)

(b) Deformed Minkowski spaces associated with(3L

(1) Let R® be given first by (35) and leR™ = R, equation (10). Using (37) with the
plus sign and (23), we findi(real)

[, B] = —hp? — rBS + hda — hBy + h28y [o, 8] = h(8y — BS)
[a, y] = hy? + réy — had + hBy — h?Bs [B, 8] = hs? (50)

(B, ¥] = hd(y + B) + ré? [y, 8] = —hs?

det, K = (@8 — By + hps). (51)

h2 42

T The Minkowski space of [26] is also @L, (2)-like space, but is different from the above.
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(2) Let R® be given now by (36) with- = 0. In this case
[, B] = 2has + h?B6 [a, 8] = 21 (8y — BS)

[, y] = —h28y — 2héa [B, 8] = 2h8? (52)

(B, y] = 31282 [y, 8] = —2h8?

2

(c) Final remarks

For all the O-spacetime algebras, time may be defined as proportiona t& tf= 2x° in

the undeformed case). The time generator obtained in this way is central oanér
[12—14] and for the Minkowski algebra (44) (in fact, they are isomorphic: the entries of the
covariant vectork © for MV satisfy the commutation relations (44) [1]).

The differential calculus on all the above Minkowski spaces may be easily discussed now
along the lines of [1, 23]; one could also investigate the role played in it by the contraction
relating [10] theg- and h-deformations. To conclude, let us mention that the additive
braided group structure [19-21] of all these algebras may be easily found. It suffices to
impose that equation (37) is also satisfied by the fita+ K of two copieskK and K.

Using Hecke’s conditionRp12 = Réél + (p — p~HP) this gives

RoK{RP K, = £K,RPK{ (PR, P)™ + forg,he R — forg iR (54)
which is clearly preserved by (21); fov1(", it reproduces the result of [24].
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